Solving Systems of Nonlinear Equations Using a Globally Convergent Optimization Algorithm

نویسندگان

  • Sona Taheri
  • Musa Mammadov
چکیده

Solving systems of nonlinear equations is a relatively complicated problem for which a number of different approaches have been presented. In this paper, a new algorithm is proposed for the solutions of systems of nonlinear equations. This algorithm uses a combination of the gradient and the Newton’s methods. A novel dynamic combinatory is developed to determine the contribution of the methods in the combination. Also, by using some parameters in the proposed algorithm, this contribution is adjusted. We use the gradient method due to its global convergence property, and the Newton’s method to speed up the convergence rate. We consider two different combinations. In the first one, a step length is determined only along the gradient direction. The second one is finding a step length along both the gradient and the Newton’s directions. The performance of the proposed algorithm in comparison to the Newton’s method, the gradient method and an existing combination method is explored on several well known test problems in solving systems of nonlinear equations. The numerical results provide evidence that the proposed combination algorithm is generally more robust and efficient than other mentioned methods on some important and difficult problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

Using Vector Divisions in Solving Nonlinear Systems of Equations

Abstract With the motivation of avoiding the computation of the inverse of Jacobian matrix, which is involved in Newton’s method, we consider the use of vector divisions in solving a nonlinear system of equations F (x) = 0. Vector divisions are applied to form the secant method formulas. Based on that, a globally convergent hybrid algorithm for solving the nonlinear system of equations is propo...

متن کامل

Constrained Nonlinear Optimal Control via a Hybrid BA-SD

The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...

متن کامل

PROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS

We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...

متن کامل

Probability-one homotopies in computational science

Probability-one homotopy algorithms are a class of methods for solving nonlinear systems of equations that, under mild assumptions, are globally convergent for a wide range of problems in science and engineering. Convergence theory, robust numerical algorithms, and production quality mathematical software exist for general nonlinear systems of equations, and special cases such as Brouwer fixed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012